$$
\sin (\pi / 4)=\frac{\sqrt{2}}{2}
$$

E.g. Suppose that the path of a certain particle is given by the parametric equation

$$
\left\{\begin{array}{l}
x(t)=\cos (t) \\
y(t)=\sin ^{2}\left(\frac{t}{2}\right)
\end{array} \quad-\infty<t<\infty\right.
$$

(1) Sketch this curve, using an arrow to indicate direction.

t	$x(t)=\cos (t)$	$y(t)=(\sin (t / 2))^{2}$
$-\pi$	$\cos (-\pi)=-1$	$\left(\sin \left(\frac{-\pi}{2}\right)\right)^{2}=(-1)^{2}=1$
$-\pi / 2$	$\cos (-\pi / 2)=0$	$\left(\sin \left(\frac{-\pi}{4}\right)\right)^{2}=\left(-\frac{\sqrt{2}}{2}\right)^{2}=\frac{2}{4}=\frac{1}{2}$
0	$\cos (0)=1$	$\left(\sin \left(\frac{0}{2}\right)\right)^{2}=(\sin 0)^{2}=0^{2}=0$
$\pi / 2$	$\ldots=0$	$\ldots=1 / 2$
π	$\ldots=-1$	$\ldots=1$

(2) Eliminate the parameter to find a cartesian equation

$$
\begin{aligned}
& x(t)=\cos (t) \\
& y(t)=\sin ^{2}\left(\frac{t}{2}\right)
\end{aligned} \frac{\text { Range of cos }(t)}{\text { is }[-1,2]}
$$

want equ of just $x \forall y$
must have an equation relating x on
Remember: $\sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2}$
plug in $\theta=\frac{t}{2}, \quad 2 \theta=2 \cdot \frac{t}{2}=t$

$$
\begin{gathered}
y(t)=\sin ^{2}\left(\frac{t}{2}\right)=\frac{1-\cos (t)}{2} x(t) \\
\text { cartesian } y=\frac{1-x}{2}=\frac{-1}{2} x+\frac{1}{2} \leftarrow x \text { in }[-1,1]
\end{gathered}
$$

